ACADÉMIE DE MARTINIQUE

Quelques trucs sur GeoGebra

par Vincent Tolleron, Lycée Frantz Fanon, La Trinité, Martinique

INTERFACE ET NAVIGATION

Accès aux options

Se fait par un clic droit, qui ouvre une fenêtre contextuelle, et qui permet de modifier certains paramètres.

Zoom dans la fenêtre graphique

On peut utiliser le bouton dédié, mais il est plus facile d'utiliser la molette de la souris:

- molette vers le bas: zoom in
- molette vers le haut: zoom out

Déplacement des axes: Maj + clic gauche

La souris pointant sur une zone vierge, touche Majuscule enfoncée, bouton gauche de la souris maintenu enfoncé et déplacement.

Étirement des axes: Maj + clic gauche

On peut, par un clic droit, choisir le ratio axe x: axe y, mais à l'usage la solution la plus pratique est de cliquer sur l'axe à étirer, de maintenir le bouton enfoncé, et d'étirer l'axe en appuyant sur la touche Majuscule.

Étiquetage automatique (menu options)

On peut le désactiver en cas d'un grand nombre prévisible d'objets dans le graphique.

Académie de Martinique

LA ZONE DE SAISIE

C'est la façon la plus efficace de créer les objets. Pour créer un point, par exemple, on peut utiliser le bouton ad-hoc et positionner le point dans la zone graphique. Avec la zone de saisie, les possibilités sont plus nombreuses:

Instrution	Effet
(-2,3)	le point de coordonnées cartésiennes (-2,3) est créé, affiché, et un nom automatique lui est attribué
C_2=(5,6)	le point C cartésiennes (5,6) est créé et affiché
J:(6,2)	le point J de coordonnées cartésiennes (6,2) est créé et affiché
(3;60°)	le point de coordonnées polaires (3,60°) est créé, affiché, et un nom automatique lui est attribué
z_5=2+i	Le point d'affixe z

Syntaxe générale: commande[argument1,argument2,etc.]

On commence à taper le début du nom de la commande dans la zone de saisie, plusieurs suggestions s'affichent. On peut dès lors, à l'aide des touches fléchées et de la touche entrée, valider le choix effectué, et le nom de la commande est complété dans la zone de saisie. On navigue d'un argument à l'autre au moyen de la touche de tabulation.

La syntaxe est souple, voici quelques exemples (parmi des centaines possibles):

Instuction	Effet
vecteur[C_2,J]	création et affichage du vecteur d'origine C automatique est attribué (points J et C
u=vecteur[(-2,6),1-2i]	création du vecteur u d'origine le point de coordonnées (-2,6) et d'extrémité le point d'affixe 1-2i
f:Fonction[x^2,-1,2]	La fonction f définie sur [-1,2] par f(x)=x2 est créée et sa courbe représentative est affichée
f(x)=Fonction[x^2,-1,2]	Idem
C: cercle[(2,2),3]	Le cercle C de centre le point de coordonnées (2,2) et de rayon 3 est créé
Intégrale[f]	Une primitive de f est créée et sa courbe affichée, un nom automatique lui est attribué
Intégrale[1/x,1,4]	L'intégrale de la fonction inverse entre 1 et 4 est calculée, son aire est affichée, un nom automatique lui est attribué
Normale[5,2,x]	La fonction densité de la loi normale d'espérance 5 et d'écart-type 2 est créée, sa courbe est affichée
Tangente[1,f]	La tangente à la courbe représentative de f au point d'abscisse 1 est créée et affichée
AléaBinomiale(10,1/6)	Simulation d'une issue de la loi binomiale B(10;1/6)
Séquence[AléaEntreBornes[1,6], k, 1, 10]	Une liste de 10 valeurs entières aléatoires (entre 1 et 6) est créée, un nom lui est attribué
Médiane[{10,12,2,3,5}]	Calcule la médiane de la liste {10,12,2,3,5}, un nom automatique est attribué
BoiteMoustache[2,0.5,liste]	Une liste de valeurs étant créée, dessine la boîte à moustaches correspondante, positionnée à l'ordonnée 2, et de demi-hauteur 0,5
LimDroite[3/x,0]	Calcule la limite de 3/x quand x tend vers 0 à droite

CALCUL FORMEL

Voici quelques exemples (liste non exhaustive) de commandes de calcul formel, et leur résultat.

Commande	Résultat	Commentaire
Factoriser[6912]	2 ⁸ .3 ³	on peut aussi appuyer sur le bouton dédié
Factoriser[3x^3-2x^2-6x+4]	(3x-2)(x	idem
Factoriselrr[3x^3-2x^2-6x+4]	(x-√2)(x+√2)(3x-2)	factorisation avec irrationnels
Développer[(x-a)^3]	-a ³ +3a	on peut aussi appuyer sur le bouton dédié
f(x):=2x^2-3x+1	f(x):=2x	Attention: l'affectation se fait avec := dans la fenêtre de calcul formel
FormeCanonique[f]	2(x-3/4)	
Racine[f]	{x=1/2,x=1}	
Dérivée[f]	4x-3	
f'(x)	4x-3	alternative
Résoudre[f'(x)=0,x]	{x=3/4}	
EstPremier[2014]	false	2014 n'est pas premier
EstPremier[2017]	true	par contre 2017 l'est
PremierSuivant[2017]	2027	le nombre premier suivant 2017 est 2027
ListeDiviseurs[1002]	{1,2,3,6,167,334,501,1002}	
PGCD[318,912]	6	
PPCM[6,15]	30	
EnBase[2014,2]	11111011110	conversion de 2014 en base 2
DeBase["11111011110",2]	2014	conversion d'un nombre en base 10
Résoudre[x^2-5=0]	{x=-√5,x=√5}	résolution exacte
NRésoudre[x^2-5=0]	{x=-2.24,x=2.24}	résolution approchée
Résoudre[U=R*I,R]	{R=U/I}	résolution par rapport à une variable
Résoudre[{a+b=2,a-b=0},{a,b}}	{{a=1,b=1}}	résolution d'un système d'équations
Limite[1/x,+∞]	0	limite
LimGauche[1/x,0]	-∞	limite à gauche
LimDroite[1/x,0]	+∞	limite à droite

COMMENT S'Y RETROUVER ?

- avec votre bon sens et les suggestions proposées
- avec l'aide intégrée

- avec la documentation officielle et exhaustive: http://wiki.geogebra.org/fr/Catégorie:Commandes
- Des vidéos de prise en main, disponibles sur le site académique (d'autres suivront):

http://site.ac-martinique.fr/mathematiques/?page_id=217

• un petit mail à vincent.tolleron@me.com