ACADEMIE DE LA MARTINIQUE BACCALAUREAT SERIE S Epreuve orale de contrôle SCIENCES DE LA VIE ET DE LA TERRE

Enseignement de spécialité : Thème 1- La Terre dans l'Univers, la vie et l'évolution du vivant

Energie et cellule vivante

La respiration est un mécanisme permettant aux cellules du corps humain de récupérer une grande quantité d'énergie sous forme d'ATP. Elle se manifeste aussi chez des champignons unicellulaires hétérotrophes comme les levures.

Nous cherchons à identifier le métabolite respiratoire des levures et à expliquer les premières étapes de la respiration cellulaire.

Document: le devenir du 14C

Des levures sont cultivées sur un milieu très oxygéné et contenant une faible quantité de glucose radioactif (G) marqué au carbone 14 (14C). Des prélèvements de levures sont réalisés à divers moments notés t₀, t₁, t₂, t₃, t₄ pour suivre le devenir du ¹⁴C dans les molécules ainsi que sa localisation cellulaire. Les résultats sont consignés dans le tableau ci-dessous.

Temps	Milieu externe	Milieu cellulaire		
		Cytoplasme	Matrice mitochondriale	
t ₀	G***			
t ₁	G+	G++		
t ₂		p+++	p+	
t ₃	CO ₂ +		p***	
t ₄	CO ₂ +++			

P: pyruvate; CO₂: dioxyde de carbone; + radioactivité faible; +++: radioactivité forte

<u>Matériel expérimental</u>: chaîne ExAO pour l'étude de la respiration avec résultat après injection d'une solution de glucose à l'écran.

A partir de vos connaissances, des informations extraites du document ci-dessus et du matériel expérimental mis à votre disposition, **identifiez** le métabolite respiratoire des levures et **présentez** les deux premières étapes de la respiration à l'échelle de la cellule. Ces étapes seront localisées sur un schéma de synthèse.

Eléments de correction

Exploitation des résultats obtenus avec le matériel mis à disposition

Saisie d'informations	Déduction
Avant l'injection de glucose (représente témoin), les taux de dioxyde de carbone et de dioxygène sont constants	Les levures n'utilisent pas le dioxygène et ne produisent pas de CO ₂
Après injection du glucose, le taux de dioxyde de carbone augmente et celui de dioxygène diminue	Les levures consomment le dioxygène du milieu et rejettent du dioxyde de carbone.
Conclusion	Les levures utilisent le glucose comme métabolite respiratoire

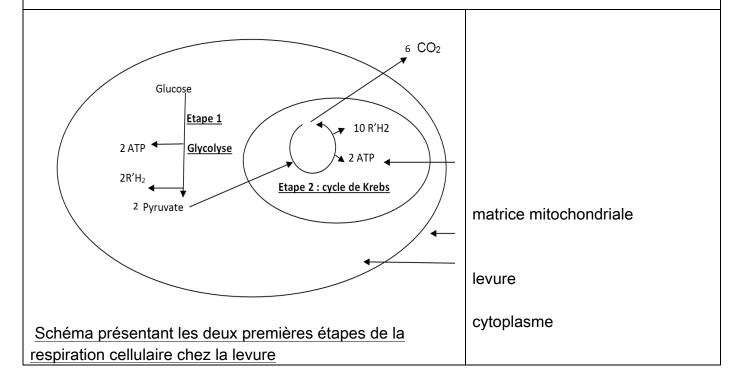
Exploitation du document

Saisie d'informations	Déduction	
t _{0:} Présence de beaucoup de glucose radioactif	Toutes les molécules radioactives qui	
dans le milieu externe	apparaîtront proviendront du glucose	
t _{1:} Moins de glucose radioactif dans le milieu	Entrée de glucose radioactif dans le	
extérieur et apparition de glucose radioactif dans le	cytoplasme	
cytoplasme		
t ₂ : Absence de glucose radioactif dans le milieu	Le pyruvate provient du glucose.	
extérieur et présence de pyruvate radioactif dans le	Il entre dans la matrice mitochondriale	
cytoplasme (forte radioactivité) et dans la matrice		
mitochondriale (faible radioactivité).		
t _{3 :} Présence de CO ₂ radioactif dans le milieu	Tout le pyruvate qui était dans le	
extérieur	cytoplasme entre dans la matrice	
Absence du pyruvate dans le cytoplasme	mitochondriale	
La quantité de pyruvate radioactif augmente dans la	Il est à l'origine du CO ₂ produit	
matrice mitochondriale		
t ₄ : Absence de pyruvate radioactif dans la matrice et	Tout le pyruvate a été oxydé en CO ₂ qui	
augmentation du CO ₂ radioactif dans le milieu	sort alors de la cellule	
extérieur		

Conclusion générale
issue de
l'exploitation des
différents supports

Les levures utilisent le glucose comme métabolite respiratoire. Ce métabolite est oxydé en pyruvate dans le cytoplasme. Une fois entré dans la matrice mitochondriale, le pyruvate est oxydé en CO₂ qui sort ensuite de la cellule.

ACADEMIE DE LA MARTINIQUE


Connaissances à mobiliser

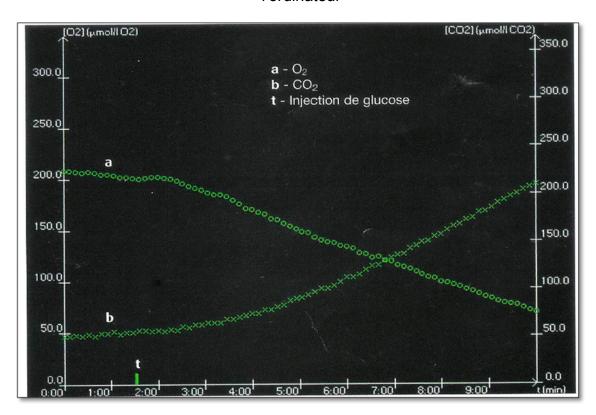
Les levures prélèvent le glucose C₆H₁₂O₆ du milieu et l'oxyde en 2 molécules de pyruvate dans le **cytoplasme** : cette première étape de la respiration cellulaire est nommée **glycolyse**.

Au cours de la glycolyse il y a production de deux ATP et de deux composés réduits R'H2.

Les deux molécules de pyruvate entrent dans la **matrice mitochondriale** et sont entièrement oxydés en 6 molécules de CO₂. Ces molécules sont rejetées à l'extérieur de la cellule. Il s'agit de la **décarboxylation oxydative**= cycle de Krebs.

Cette deuxième étape permet de former 2 ATP et 10 composés réduits R'H₂.

Barème:


1- Connaissances:

Bonne maîtrise des connaissances	Connaissances partielles et/ou imparfaitement utilisées		Pas de connaissances	
	Mais remobilisées avec dialogue	Non remobilisées avec dialogue		
10 à 8	7 à 4	3 à 1	0	
Le dialogue avec l'examinateur permet l'ajustement du curseur dans chaque cas.				

2- Raisonnement:

Raisonnement rigoureux construit avec tous les éléments scientifiques issus des documents et/ou des connaissances		Raisonnement maladroit Exploitation partielle des données dans le cadre d'un raisonnement qui ne répond pas	Pas de raisonnement correctement structuré		
Intégration totale	Intégration partielle	complètement au problème posé	Prise en compte de	Aucun document correctement pris en	
	Ponsons	, , p	quelques documents	compte	
10 à 9	8 à 7	6 à 4	3 à 1	0	
Le dialogue avec l'examinateur permet l'ajustement du curseur dans chaque cas.					

A destination des correcteurs et agents de laboratoire: ce qui devra apparaître à l'écran de l'ordinateur

Evolution au cours du temps, des concentrations en dioxygène et en dioxyde de carbone du milieu dans lequel sont cultivées des levures.