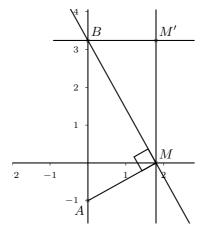
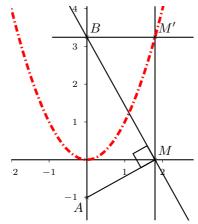
MATHÉMATIQUES Martinique

La fonction carrée


Activité 1

Soit un repère orthonormé de centre O. Soit A le point de coordonnées (0; -1).


Soit M le point de coordonnées(x; 0) où x est un nombre réel.

Soit B le point d'intersection de l'axe des ordonnées et de la perpendiculaire en M au segment [AM].

- 1) Que vaut OB losque x = 0?
- 2) Supposons dorénavant que $x \neq 0$. Soit α une mesure de l'angle géométrique \widehat{OBM} .
 - a) Démontrer que α est aussi une mesure de l'angle géométrique \widehat{OMA} .
 - b) En exprimant $tan(\alpha)$ de deux manières, démontrer que $OM^2 = OB.OA$
 - c) Déduire du a) et du b) que $OB = x^2$.
- 3) En utilisant le logiciel « Géogébra »
 - a) Construire la figure précédente.
 - b) Construire M' le point d'intersection de la perpendiculaire en M à l'axe des abscisses et de la perpendiculaire en B à l'axe des ordonnées.

c) Construire le lieu géométrique de M' lorsque M décrit l'axe des ordonnées.

- 4) Observez la courbe ainsi obtenue et qui a donc pour équation $y = x^2$.
 - a) Que peut-on conjecturer sur la parité de f? Justifier.
 - **b)** Démontrer que si 0 < x < x' alors $x^2 < x'^2$

Démontrer que si x < x' < 0 alors $x^2 > x'^2$

Dresser le tableau de variations de f.

c) Compléter le tableau de valeurs suivant :

	x	10^{0}	10^{1}	10^{2}	10^{3}	10^{4}
ſ	f(x)					

- d) Pour quelles valeurs de x a-t-on $x^2 > 10^2$?
- e) Pour quelles valeurs de x a-t-on $x^3 > 10^{10}$?
- f) Si A > 0, pour quelles valeurs de x a-t-on $x^2 > A^2$?

Activité 2

1) Compléter le tableau suivant :

x	0	0, 5	0, 7	0,8	0,9	1	1,2	1,5	2	3	4
f(x)											

- 2) Placer les points de coordonnée $(x; x^2)$ du tableau précédent dans un repère orthogonal.
- 3) Relier ces points à main levée.

En déduire le tracé complet de la courbe d'équation $y = x^2$.

Tracer dans le même repère la courbe d'équation y=x .

- 4) On voudrait comparer les positions relatives des courbes d'équation $y = x^2$ et y = x.
 - a) Résoudre l'équation d'inconnue x réelle : $x^2 = x$
 - b) Résoudre les inéquations d'inconnue x réelle : $x^2 < x$ et $x^2 > x$

Résumé de cours

Soit f définie sur \mathbb{R} par $f(x) = x^2$

Elle admet le tableau de variations suivant

Sa courbe représentative dans un repère orthogonal est appelée parabole.

Cette parabole a pour sommet 0 et pour axe de symétrie l'axe des ordonnées.

Un nombre est égal à son carré si et seulement si ce nombre est 0 ou 1.

Un nombre est plus grand que son carré si et seulement si ce nombre est compris entre 0 et 1.

Un nombre positif est plus petit que son carré si et seulement si ce nombre est supérieur à 1.

Un nombre négatif est plus petit que son carré.