Baccalauréat S

Antilles-Guyane / 22 juin 2015

Exercice 1 6 points

Commun à tous les candidats

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = \ln x$.

Pour tout réel a strictement positif, on définit sur $[0; +\infty[$ la fonction g_a par $g_a(x) = ax^2$.

On note \mathcal{C} la courbe représentative de la fonction f et Γ_a celle de la fonction g_a dans un repère du plan. Le but de l'exercice est d'étudier l'intersection des courbes \mathcal{C} et Γ_a suivant les valeurs du réel strictement positif a.

Partie A

On a construit en **annexe 1** (à rendre avec la copie) les courbes C, $\Gamma_{0,05}$, $\Gamma_{0,1}$, $\Gamma_{0,19}$ et $\Gamma_{0,4}$.

- 1) Nommer les différentes courbes sur le graphique. Aucune justification n'est demandée.
- 2) Utiliser le graphique pour émettre une conjecture sur le nombre de points d'intersection de C et Γ_a suivant les valeurs (à préciser) du réel a.

Partie B

Pour un réel a strictement positif, on considère la fonction h_a définie sur l'intervalle]0; $+\infty[$ par

$$h_a(x) = \ln x - ax^2.$$

- 1) Justifier que x est l'abscisse d'un point M appartenant à l'intersection de C et Γ_a si et seulement si $h_a(x) = 0$.
- 2) a) On admet que la fonction h_a est dérivable sur]0; $+\infty[$, et on note h'_a la dérivée de la fonction h_a sur cet intervalle.

Le tableau de variation de la fonction ha est donné ci-dessous.

Justifier, par le calcul, le signe de $h'_a(x)$ pour x appartenant à]0; $+\infty[$.

x	$0 \qquad \frac{1}{\sqrt{2}} \qquad +\infty$
Signe de $h'_a(x)$	+ 0 -
Variations de h_a	$\frac{-1-2\ln(2a)}{2}$

- b) Rappeler la limite de $\frac{\ln x}{x}$ en $+\infty$. En déduire la limite de la fonction h_a en $+\infty$. On ne demande pas de justifier la limite de h_a en 0.
- 3) Dans cette question et uniquement dans cette question, on suppose que a = 0, 1.
 - a) Justifier que, dans l'intervalle $\left[0; \frac{1}{\sqrt{0,2}}\right]$, l'équation $h_{0,1}(x) = 0$ admet une unique solution. On admet que cette équation a aussi une seule solution dans l'intervalle $\left[0; +\infty\right[$.
 - **b)** Quel est le nombre de points d'intersection de \mathcal{C} et $\Gamma_{0,1}$?

- 4) Dans cette question et uniquement dans cette question, on suppose que $a = \frac{1}{2e}$.
 - a) Déterminer la valeur du maximum de $h_{\frac{1}{2e}}$.
 - b) En déduire le nombre de points d'intersection des courbes \mathcal{C} et $\Gamma_{\frac{1}{2a}}$. Justifier.
- 5) Quelles sont les valeurs de a pour lesquelles \mathcal{C} et Γ_a n'ont aucun point d'intersection? Justifier.

Exercice 2 5 points

Commun à tous les candidats

La partie C peut être traitée indépendamment des parties A et B

Partie A

On considère une variable aléatoire X qui suit la loi exponentielle de paramètre λ avec $\lambda > 0$. On rappelle que, pour tout réel a strictement positif,

$$P(X \leqslant a) = \int_0^a \lambda e^{-\lambda t} dt.$$

On se propose de calculer l'espérance mathématique de X, notée E(X), et définie par

$$E(X) = \lim_{x \to +\infty} \int_0^x \lambda t e^{-\lambda t} dt.$$

On note \mathbb{R} l'ensemble des nombres réels.

On admet que la fonction F définie sur \mathbb{R} par $F(t) = -\left(t + \frac{1}{\lambda}\right) e^{-\lambda t}$ est une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(t) = \lambda t e^{-\lambda t}$.

1) Soit x un nombre réel strictement positif. Vérifier que

$$\int_0^x \lambda t e^{-\lambda t} dt = \frac{1}{\lambda} \left(-\lambda x e^{-\lambda x} - e^{-\lambda x} + 1 \right).$$

2) En déduire que $E(X) = \frac{1}{\lambda}$.

Partie B

La durée de vie, exprimée en années, d'un composant électronique peut être modélisée par une variable aléatoire notée X suivant la loi exponentielle de paramètre λ avec $\lambda > 0$.

La courbe de la fonction densité associée est représentée en annexe 2.

- 1) Sur le graphique de l'annexe 2 (à rendre avec la copie) :
 - a) Représenter la probabilité $P(X \leq 1)$.
 - b) Indiquer où se lit directement la valeur de λ .
- 2) On suppose que E(X) = 2.
 - a) Que représente dans le cadre de l'exercice la valeur de l'espérance mathématique de la variable aléatoire X?
 - **b)** Calculer la valeur de λ .
 - c) Calculer $P(X \le 2)$. On donnera la valeur exacte puis la valeur arrondie à 0,01 près. Interpréter ce résultat.

d) Sachant que le composant a déjà fonctionné une année, quelle est la probabilité que sa durée de vie totale soit d'au moins trois années? On donnera la valeur exacte.

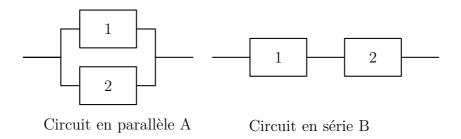
Partie C

Un circuit électronique est composé de deux composants identiques numérotés 1 et 2. On note D_1 l'évènement « le composant 1 est défaillant avant un an » et on note D_2 l'évènement « le composant 2 est défaillant avant un an ».

On suppose que les deux événements \mathcal{D}_1 et \mathcal{D}_2 sont indépendants et que

$$P(D_1) = P(D_2) = 0.39.$$

Deux montages possibles sont envisagés, présentés ci-dessous :



- 1) Lorsque les deux composants sont montés « en parallèle », le circuit A est défaillant uniquement si les deux composants sont défaillants en même temps. Calculer la probabilité que le circuit A soit défaillant avant un an.
- 2) Lorsque les deux composants sont montés « en série », le circuit B est défaillant dès que l'un au moins des deux composants est défaillant. Calculer la probabilité que le circuit B soit défaillant avant un an.

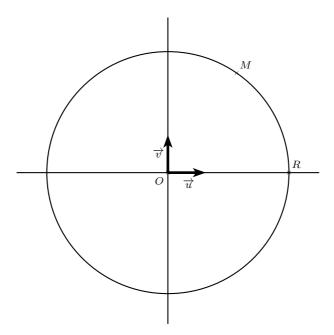
Exercice 3 4 points

Commun à tous les candidats

Partie A

On appelle \mathbb{C} l'ensemble des nombres complexes.

Dans le plan complexe muni d'un repère orthonormé $(O, \overrightarrow{u}; \overrightarrow{v})$ on a placé un point M d'affixe z appartenant à \mathbb{C} , puis le point R intersection du cercle de centre O passant par M et du demi-axe $[O; \overrightarrow{u})$.



- 1) Exprimer l'affixe du point R en fonction de z.
- 2) Soit le point M' d'affixe z' définie par

$$z' = \frac{1}{2} \left(\frac{z + |z|}{2} \right).$$

Reproduire la figure sur la copie et construire le point M'.

Partie B

On définit la suite de nombres complexes (z_n) par un premier terme z_0 appartenant à \mathbb{C} et, pour tout entier naturel n, par la relation de récurrence :

$$z_{n+1} = \frac{z_n + |z_n|}{4}.$$

Le but de cette partie est d'étudier si le comportement à l'infini de la suite $(|z_n|)$ dépend du choix de z_0 .

- 1) Que peut-on dire du comportement à l'infini de la suite $(|z_n|)$ quand z_0 est un nombre réel négatif?
- 2) Que peut-on dire du comportement à l'infini de la suite $(|z_n|)$ quand z_0 est un nombre réel positif?
- 3) On suppose désormais que z_0 n'est pas un nombre réel.
 - a) Quelle conjecture peut-on faire sur le comportement à l'infini de la suite $(|z_n|)$?
 - b) Démontrer cette conjecture, puis conclure.

Exercice 4 5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

Partie A

On considère l'algorithme suivant :

Variables: k et p sont des entiers naturels

u est un réel

Entrée : Demander la valeur de pTraitement : Affecter à u la valeur 5 Pour k variant de 1 à p

Affecter à *u* la valeur 0, 5u + 0, 5(k - 1) - 1, 5

Fin de pour

Sortie: Afficher u

Faire fonctionner cet algorithme pour p=2 en indiquant les valeurs des variables à chaque étape. Quel nombre obtient-on en sortie?

Partie B

Soit (u_n) la suite définie par son premier terme $u_0 = 5$ et, pour tout entier naturel n par

$$u_{n+1} = 0, 5u_n + 0, 5n - 1, 5.$$

- 1) Modifier l'algorithme de la première partie pour obtenir en sortie toutes les valeurs de u_n pour n variant de 1 à p.
- 2) À l'aide de l'algorithme modifié, après avoir saisi p = 4, on obtient les résultats suivants :

n	1	2	3	4	
u_n	1	-0, 5	-0,75	-0,375	

Peut-on affirmer, à partir de ces résultats, que la suite (u_n) est décroissante? Justifier.

- 3) Démontrer par récurrence que pour tout entier naturel n supérieur ou égal à 3, $u_{n+1} > u_n$. Que peut-on en déduire quant au sens de variation de la suite (u_n) ?
- 4) Soit (v_n) la suite définie pour tout entier naturel n par $v_n = 0, 1u_n 0, 1n + 0, 5$. Démontrer que la suite (v_n) est géométrique de raison 0, 5 et exprimer alors v_n en fonction de n.
- 5) En déduire que, pour tout entier naturel n,

$$u_n = 10 \times 0, 5^n + n - 5.$$

6) Déterminer alors la limite de la suite (u_n) .

Exercice 4 5 points

Candidats ayant suivi l'enseignement de spécialité

Les parties A et B peuvent être traitées de façon indépendante.

Partie A

Pour deux entiers naturels non nuls a et b, on note r(a,b) le reste dans la division euclidienne de a par b. On considère l'algorithme suivant :

Variables: c est un entier naturel

a et b sont des entiers naturels non nuls

Entrées: Demander a

Demander b

Traitement: Affecter à c le nombre r(a, b)

Tant que $r(a,b) \neq 0$:

Affecter à a le nombre bAffecter à b la valeur de cAffecter à c le nombre r(a, b)

Fin Tant que

Sortie: Afficher b

- 1) Faire fonctionner cet algorithme avec a=26 et b=9 en indiquant les valeurs de a, b et c à chaque étape.
- 2) Cet algorithme donne en sortie le PGCD des entiers naturels non nuls a et b. Le modifier pour qu'il indique si deux entiers naturels non nuls a et b sont premiers entre eux.

Partie B

À chaque lettre de l'alphabet on associe grâce au tableau ci-dessous un nombre entier compris entre 0 et 25.

Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	Μ
0	1	2	3	4	5	6	7	8	9	10	11	12

N	О	Р	Q	R	S	Τ	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

On définit un procédé de codage de la façon suivante :

Étape 1: on choisit deux entiers naturels p et q compris entre 0 et 25.

Étape 2 : à la lettre que l'on veut coder, on associe l'entier x correspondant dans le tableau ci-dessus.

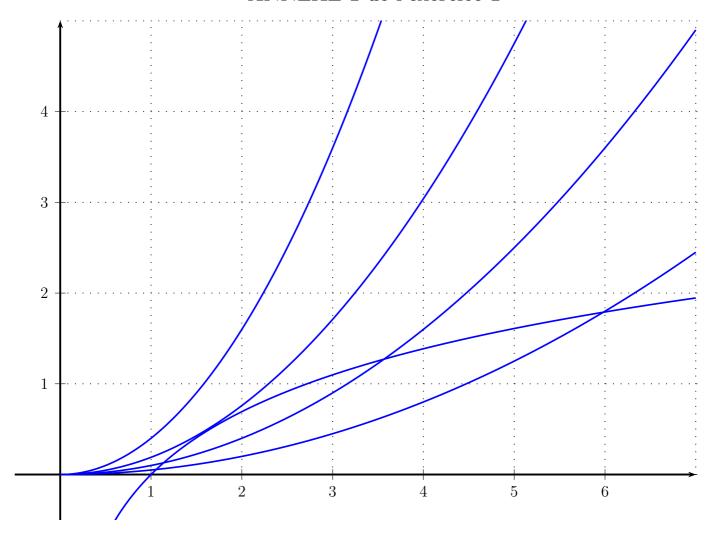
Étape 3: on calcule l'entier x' défini par les relations $x' \equiv px + q[26]$ et 0 < x' < 25.

Étape 4: à l'entier x', on associe la lettre correspondante dans le tableau.

- 1) Dans cette question on choisit p = 9 et q = 2.
 - a) Démontrer que la lettre V est codée par la lettre J.
 - b) Citer le théorème qui permet d'affirmer l'existence de deux entiers relatifs u et v tels que 9u + 26v = 1. Donner sans justifier un couple (u, v) qui convient.
 - c) Démontrer que $x' \equiv 9x + 2[26]$ équivaut à $x \equiv 3x' + 20[26]$.
 - d) Décoder la lettre R.
- 2) Dans cette question, on choisit q=2 et p est inconnu. On sait que J est codé par D. Déterminer la valeur de p (on admettra que p est unique).
- 3) Dans cette question, on choisit p = 13 et q = 2. Coder les lettre B et D. Que peut-on dire de ce codage

Á RENDRE AVEC LA COPIE

ANNEXE 1 de l'exercice 1



Á RENDRE AVEC LA COPIE

ANNEXE 2 de l'exercice 2

